Fabricating scaffolds by microfluidics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabricating nanogaps by nanoskiving.

There are several methods of fabricating nanogaps with controlled spacings, but the precise control over the sub-nanometer spacing between two electrodes-and generating them in practical quantities-is still challenging. The preparation of nanogap electrodes using nanoskiving, which is a form of edge lithography, is a fast, simple and powerful technique. This method is an entirely mechanical pro...

متن کامل

Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system.

The last decade has seen artificial blood vessels composed of natural polymer nanofibers grafted into human bodies to facilitate the recovery of damaged blood vessels. However, electrospun nanofibers (ENs) of biocompatible materials such as chitosan (CTS) suffer from poor mechanical properties. This study describes the design and fabrication of artificial blood vessels composed of a blend of CT...

متن کامل

Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.

Highly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure;...

متن کامل

Indirect three‐dimensional printing: A method for fabricating polyurethane‐urea based cardiac scaffolds

Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to explore whether indirect three-dimensional (3D) printing could provide a means to fabricate this nov...

متن کامل

A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance

Although forsterite (Mg₂SiO₄) possesses good biocompatibility and suitable mechanical properties, the insufficient bioactivity and degradability hinders its further application. In this study, a novel MgO-CaO-SiO₂ system was developed by adding wollastonite (CaSiO₃) into Mg₂SiO₄ to fabricate bone scaffolds via selective laser sintering (SLS). The apatite-forming ability and degradability of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomicrofluidics

سال: 2009

ISSN: 1932-1058

DOI: 10.1063/1.3122665